Genetics

Classes

GENE-219 : Intro to Biochemical Genetics

This course is designed as an introductory course in biochemistry with special emphasis on those areas of biochemistry that are especially relevant to genetics and human genetics. The course is team-taught using faculty members and guest lecturers who have particular interest or training in each topic to be covered. The course is organized around four major units: Proteins and Enzymes, Nucleic Acids, Hormones, and Metabolism. The course is designed to develop a students'; recall of cellular biochemistry, knowledge base of the relationship between the genetic code and the translation of biochemical pathways in disease pathology, comprehension of the relationship between pathological genetic changes to the biological process that cause human disorders.

Credits

Credits 6

GENE-220 : Research in Genetics

This course provides academic credit for independent research. It is offered on a variable credit basis and students may elect to register for 1 to 9 credits, depending on the level of time commitment to research the student expects to dedicate. In most cases, the research conducted in this venue is research under the guidance of a faculty mentor of the student's choosing leading to a master's thesis or doctoral dissertation. This course is structured so that Masters and Doctoral students can focus on and perform literature research, identify mentors & research projects, and conduct thesis and dissertation research in the Department of Genetics & Human Genetics. Because research is rarely completed in a single semester, this course may be taken repeatedly until the research is concluded and the thesis or dissertation judged to have passed. See note on page 577 related to research and dissertation hours.

Credits

Credits 1 - Max Credits 9

GENE-222 : Biochemical and Molecular Genetics

This course provides academic credit for independent research. In most cases, the research conducted in this venue is research under the guidance of a faculty mentor of the student's choosing leading to a master's thesis or doctoral dissertation. This course is structured so that Masters and Doctoral students can focus on and perform literature research, identify mentors & research projects, and conduct thesis and dissertation research in the Department of Genetics & Human Genetics. Because research is rarely completed in a single semester, this course may be taken repeatedly until the research is concluded and the thesis or dissertation judged to have passed.

Credits

Credits 4

GENE-223 : Human Genetics I

The course is distributed over two semesters as Human Genetics I & II. This course offers a careful study of the conceptual terrain for the discipline to develop a working familiarity with many of the central concepts in contemporary human genetics, recognize the roles of technology and human values in shaping the central concepts, develop proficiency in analyzing models of heritable variation and corresponding phenotypic expression, and their distributions in pedigrees and populations, and to identify evidence for interactions between gene expressions and environment to yield phenotypes. The course format combines lecture, discussion, assigned readings to provide further content depth and breadth

Credits

Credits 3

GENE-224 : Human Genetics II

This course is a continuation of Human Genetics I. This course will cover a minimum of 30 multifactorial phenotypes (congenital malformations and late onset disorders). This course distinguishes and characterizes each of the models of inheritance as it pertains to relationships between genes and phenotype. It's designed to cover principles of multifactorial or polygenic models for estimating empiric recurrence probabilities, correlations between genetic and environmental factors of phenotypic value and heritabilities. One goal is to identify the spectrum of approaches currently envisioned for medical intervention in genetic disorders.

Credits

Credits 3

GENE-233 : Introduction to Research

This course is required for all Master's and Ph.D. students in the first year. The course is designed for development of a hypothetical research project and writing of a detailed research proposal as a semester-long exercise. The course objective is to acquaint the student with a multitude of issues that bear on the successful conduct of independent research which include; understanding how to conduct literature searches, development of a hypothesis, identification of specific aims that will test the hypothesis, experimental design using principles of the scientific method, preparation and presentation of a written research proposal. This exercise will prepare the student for developing a thesis or dissertation proposal.

Credits

Credits 3

GENE-236 : Gene Structure and Action

This course explores the molecular process by which the synthesis, expression, and manipulation of genetic material is organized in chromatin and in cis-acting elements governing the process of the 'central dogma'. It will include a critical review of gene organization, regulation of gene expression by hormones, growth factors, and oxidant stress emphasizing signal transduction pathways and the action of ligand-receptor mediated transcription regulators. Attention will be paid to regulation of gene expression, transcription, and translation by RNA interference and natural & synthetic xenobiotics. The goal of this course os to understand the nature and function of gene expression in proliferation, differentiation, and apoptosis in development and disease.

Credits

Credits 3

GENE-310 : Seminar in Genetics

This course is offered each semester and current residents are invited to register continuously. Course format involves student participation in group discussion and article presentation each class period. The course is designed to focus on acquiring familiarity with current research in basic, clinical, and translational genetic disorders presented in various peer reviewed journals. The format promotes developing skillsets for; gathering, organizing, validating, and interpreting data of peer reviewed articles in molecular, biochemical, clinical, and population genetics. Students will develop the knowledge base to identify and compare the quality of molecular techniques and analytical tools used to perform research. The goal is to acquire skills to employ information from peered reviewed publications as a guide to understanding molecular evolution and forming individual research hypothesis.

Credits

Credits 2

GENE-315 : Cancer Genetics

This advanced elective course focuses on the genetics of cancer, specifically clinical aspects of cancer. Course format follows two hours of didactic lectures with one hour of an active learning component, bioinformatics and labs. This course will provoke dialogue by engaging class participation in questions & answers, as well as targeted discussions of information on the lecture topic gathered from other resources. The course is designed as a valuable resource for mainly graduate and health professional trainees, with interests in genetics and clinical cancer genetics. This course serves as a prerequisite to Cancer Genetics II: Molecular Aspects of Cancer.

Credits

Credits 3

GENE-411 : Medical Genetics

This course introduces students to the clinical aspect of a broad range of human genetic disorders, focusing on phenotypic characteristics, current confirmatory diagnostic techniques for each disorder, and approaches to interventions in terms of either prevention of occurrence, reduced morbidity, or achieving improved coping with disease. The course is designed to develop a students ability to construct pedigrees and to interpret modes of inheritance. Course formats consists lectures organized in a case study format such that an integration of all components of phenotype can be understood in relation to rationale for diagnostic methodology, and relevant intervention approaches. Students perform assigned reading, on-line searches on genetic diseases.

Credits

Credits 3

GENE-412 : Mutation in Human Gene

This course is structured for research ideas and current advances in genetic and biochemical alterations as a tool for clinical and translation research. This entails an integration of current events and data into the learning modality that utilizes current peer reviewed journal articles. This course focuses on using the substantial array of literature and bioinformatics to develop skills for analyzing data and addressing concepts of interpretation of data. Current peer reviewed publications are the materials used to generate an active learning education that supports group teaching, individual communication, and development of analytic skills. Course format is seminar based where students will present a 2-3 page written summary on the topic covering the molecular lesion, biochemical pathology, and a specific clinical disease associated with the genetic mutation of topic.

Credits

Credits 3